Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Chen TH
------>authors3_c=???
------>paper_class1=1
------>Impact_Factor=2.477
------>paper_class3=2
------>paper_class2=1
------>vol=541
------>confirm_bywho=leehorng
------>insert_bywho=leehorng
------>Jurnal_Rank=32.6
------>authors4_c=???
------>comm_author=1
------>patent_EDate=None
------>authors5_c=???
------>publish_day=1
------>paper_class2Letter=None
------>page2=146
------>medlineContent=
------>unit=E0600
------>insert_date=20061003
------>iam=7
------>update_date=None
------>author=???
------>change_event=4
------>ISSN=
------>authors_c=???
------>score=500
------>journal_name=European Journal of Pharmacology
------>paper_name=Dipyridamole activation of mitogen-activated protein kinase phosphatase-1 mediates inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression in RAW 264.7 cells
------>confirm_date=20061003
------>tch_id=081004
------>pmid=16765938
------>page1=138
------>fullAbstract=Dipyridamole is a nucleoside transport inhibitor and a non-selective phosphodiesterase inhibitor. However, the mechanisms by which dipyridamole exerts its anti-inflammatory effects are not completely understood. In the present study, we investigated the role of mitogen-activated kinase phosphatase-1 (MKP-1) in dipyridamole~s anti-inflammatory effects. We show that dipyridamole inhibited interleukin-6 and monocyte chemoattractant protein-1 secretion, inducible nitric oxide synthase protein expression, nitrite accumulation, and cyclooxygenase-2 (COX-2) induction in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Dipyridamole inhibited the nuclear factor kappa B (NF-kappaB) signaling pathway as demonstrated by inhibition of the inhibitor of NF-kappaB (IkappaB) phosphorylation, IkappaB degradation, p65 translocation from the cytosol to the nucleus, and transcription of the reporter gene. Dipyridamole also inhibited LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) and IkappaB kinase-beta (IKK-beta) activities in RAW 264.7 cells. A p38 MAPK inhibitor, SB 203580, inhibited LPS-stimulated COX-2 expression and IKK-beta activation suggesting that LPS may activate the NF-kappaB signaling pathway via upstream p38 MAPK activation. Furthermore, dipyridamole stimulated transient activation of MKP-1, a potent inhibitor of p38 MAPK function. Knockdown of MKP-1 by transfecting MKP-1 siRNA or inhibition of MKP-1 by the specific inhibitor, triptolide, significantly reduced the inhibitory effects of dipyridamole on COX-2 expression induced by LPS. Taken together, these data suggest that dipyridamole exerts its anti-inflammatory effect via activation of MKP-1, which dephosphorylates and inactivates p38 MAPK. Inactivation of p38 MAPK in turn inhibits IKK-beta activation and subsequently the NF-kappaB signaling pathway that mediates LPS-induced cyclooxygenase-2 expression in RAW 264.7 cells.
------>tmu_sno=None
------>sno=14122
------>authors2=Kao YC
------>authors3=Chen BC
------>authors4=Chen CH
------>authors5=Chan P
------>authors6=Lee HM
------>authors6_c=???
------>authors=Chen TH
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=???
------>publish_area=0
------>updateTitle=Dipyridamole activation of mitogen-activated protein kinase phosphatase-1 mediates inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression in RAW 264.7 cells.
------>language=2
------>check_flag=None
------>submit_date=None
------>country=None
------>no=
------>patent_SDate=None
------>update_bywho=None
------>publish_year=2006
------>submit_flag=None
------>publish_month=1
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z