Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Yang PT
------>authors3_c=???
------>paper_class1=2
------>Impact_Factor=None
------>paper_class3=0
------>paper_class2=0
------>vol=
------>confirm_bywho=nwkuo
------>insert_bywho=jj
------>Jurnal_Rank=None
------>authors4_c=???
------>comm_author=
------>patent_EDate=None
------>authors5_c=???
------>publish_day=1
------>paper_class2Letter=None
------>page2=220
------>medlineContent=
------>unit=E0800
------>insert_date=20081126
------>iam=2
------>update_date=None
------>author=???
------>change_event=4
------>ISSN=
------>authors_c=???
------>score=-15
------>journal_name=2008??????????????
------>paper_name=??????????????????????HCA???????????
------>confirm_date=20081128
------>tch_id=086013
------>pmid=19908917
------>page1=220
------>fullAbstract=This work aims at characterizing the metabolic profile of human lung cancer, in order to gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic value in the future. Paired samples of tumor and non-involved adjacent tissues from twelve lung tumors have been directly analyzed by <sup>1</sup>H HRMAS NMR (500/600 MHz) enabling, by the first time to our knowledge, the identification of over 50 compounds. The effect of temperature on tissue stability during acquisition time has also been investigated, demonstrating that analysis should be performed within less than two hours at low temperature (277 K), in order to minimize glycerophosphocholine (GPC) and phosphocholine (PC) conversion to choline and reduce variations in some amino acids. The application of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to the standard 1D <sup>1</sup>H spectra resulted in good separation between tumor and control samples, showing that inherently different metabolic signatures characterize the two tissue types. With basis on spectral integration measurements, lactate, PC and GPC were found to be elevated in tumors, while glucose, myo-inositol, inosine/adenosine and acetate were reduced. These results show the valuable potential of HRMAS NMR-metabonomics for investigating the metabolic phenotype of lung cancer.
------>tmu_sno=None
------>sno=19888
------>authors2=Jian WS
------>authors3=Wu KC
------>authors4=Li YL
------>authors5=Hsu CY
------>authors6=Li YC
------>authors6_c=???
------>authors=Yang PT
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=???
------>publish_area=1
------>updateTitle=Metabolic Profiling of Human Lung Cancer Tissue by <sup>1</sup>H High Resolution Magic Angle Spinning (HRMAS) NMR Spectroscopy.
------>language=1
------>check_flag=None
------>submit_date=None
------>country=NULL
------>no=
------>patent_SDate=None
------>update_bywho=None
------>publish_year=2008
------>submit_flag=None
------>publish_month=1
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z