Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hwang, L.L. and Dun, N.J.
------>authors3_c=None
------>paper_class1=1
------>Impact_Factor=None
------>paper_class3=2
------>paper_class2=1
------>vol=517
------>confirm_bywho=wslee
------>insert_bywho=llhwang
------>Jurnal_Rank=None
------>authors4_c=None
------>comm_author=
------>patent_EDate=None
------>authors5_c=None
------>publish_day=None
------>paper_class2Letter=None
------>page2=228
------>medlineContent=
------>unit=000
------>insert_date=20000626
------>iam=1
------>update_date=
------>author=???
------>change_event=5
------>ISSN=None
------>authors_c=None
------>score=413
------>journal_name=J. Physiol.
------>paper_name=5-hydroxytryptamine modulates multiple conductances in immature rat rostral ventrolateral medulla neurons in vitro.
------>confirm_date=20020507
------>tch_id=089017
------>pmid=10226161
------>page1=217
------>fullAbstract=1. Whole-cell patch-clamp recordings were made from rostral ventrolateral medulla (RVLM) neurones of brainstem slices from 8- to 12-day-old rats. In the presence of tetrodotoxin (0.5 microM), 5-HT (50 microM) elicited an outward current (I5-HT,outward) (10/44 neurones) associated with an increase in membrane conductance, and an inward current (I5-HT,inward) (29/44 neurones) accompanied by a decrease or no significant change in membrane conductance. 2. The steady-state I-V relationship of I5-HT,outward showed an inward rectification; the 5-HT-induced current, which reversed at -87.9 +/- 3.0 mV, was suppressed by 0.1 mM Ba2+. 3. Two types of steady-state I-V relationship for I5-HT,inward were noted: type I I5-HT,inward was characterized by a significant decrease in membrane conductance and reversed at a potential close to or negative to the theoretical K+ equilibrium potential (EK), -94 mV, in 8/17 neurones; type II I5-HT,inward was not associated with a significant change in membrane conductance and was relatively independent of membrane potential. 4. Both type I and type II I5-HT,inward were significantly reduced in a low [Na+]o solution. In this solution, I5-HT,inward decreased with hyperpolarization and had a linear steady-state I-V relationship with a reversal potential of approximately -110 mV. The reversal potential of type I I5-HT,inward shifted to about -80 mV as the [K+]o was increased from 3.1 to 7.0 mM in low [Na+]o solution. The type II I5-HT,inward did not reverse at the estimated EK in the same solution. 5. While not affected by externally applied Cs+ (1 mM), I5-HT,inward was significantly smaller in RVLM neurones patched with Cs+-containing electrodes; the current reversed at -11.9 +/- 6.4 mV in 8/15 responsive neurones. 6. It may be concluded that in rat RVLM neurones 5-HT increases an inwardly rectifying K+ conductance which may underlie the I5-HT, outward and that a combination of varying degrees of K+ conductance decrease and a Cs+-insensitive, non-selective cation conductance increase may account for the two types of conductance change associated with I5-HT,inward.
------>tmu_sno=None
------>sno=2095
------>authors2=None
------>authors3=None
------>authors4=None
------>authors5=None
------>authors6=None
------>authors6_c=None
------>authors=Hwang, L.L. and Dun, N.J.
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=None
------>publish_area=None
------>updateTitle=5-HT modulates multiple conductances in immature rat rostral ventrolateral medulla neurones in vitro.
------>language=2
------>check_flag=
------>submit_date=
------>country=None
------>no=
------>patent_SDate=None
------>update_bywho=
------>publish_year=1999
------>submit_flag=
------>publish_month=None
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z