Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hwang, L.L. and Dun N.J.
------>authors3_c=None
------>paper_class1=1
------>Impact_Factor=None
------>paper_class3=2
------>paper_class2=1
------>vol=80
------>confirm_bywho=wslee
------>insert_bywho=llhwang
------>Jurnal_Rank=None
------>authors4_c=None
------>comm_author=
------>patent_EDate=None
------>authors5_c=None
------>publish_day=None
------>paper_class2Letter=None
------>page2=1041
------>medlineContent=
------>unit=000
------>insert_date=20000626
------>iam=1
------>update_date=
------>author=???
------>change_event=5
------>ISSN=None
------>authors_c=None
------>score=500
------>journal_name=J. Neurophysiol.
------>paper_name=5-hydroxytryptamine responses in immature rat rostral ventrolateral medulla neurons in vitro.
------>confirm_date=20020507
------>tch_id=089017
------>pmid=9744919
------>page1=1033
------>fullAbstract=Whole cell patch recordings were made from rostral ventrolateral medullar (RVLM) neurons of brain-stem slices from 8- to 12-day-old rats. By superfusion or pressure ejection to RVLM neurons, 5-hydroxytryptamine (5-HT) elicited three types of membrane potential changes: a slow hyperpolarization (5-HTH), a slow depolarization (5-HTD) and a biphasic response, which persisted in a tetrodotoxin (TTX, 0.3 microM)-containing solution. 5-HTH were accompanied by a decrease of input resistance in the majority of responsive neurons. Hyperpolarization reduced and depolarization increased the 5-HTH; the mean reversal potential was -92.3 mV in 3.1 mM and shifted to -69.3 mV in 7 mM [K+]o. Barium (Ba2+, 0.1 mM) but not tetraethylammonium (TEA, 10 mM) suppressed 5-HTH. The 5-HT1A receptor agonist (+/-)-8-hydroxy-dipropylamino-tetralin (8-OH-DPAT; 5-50 microM) hyperpolarized RVLM neurons. The 5-HT1A antagonist pindobind-5-HT1A (PBD; 1-3 microM) and the 5-HT2/5-HT1 receptor antagonist spiperone (1-10 microM) suppressed 5-HTH and the hyperpolarizing phase of biphasic responses; the 5-HT2 receptor antagonist ketanserin (3 microM) was without significant effect. 5-HTD were associated with an increase or no apparent change of input resistance in RVLM neurons. Hyperpolarization of the membrane decreased or caused no apparent change in 5-HTD. 5-HTD were reduced in an elevated [K+]o (7.0 mM) solution and > 60% in a low Na+ (26 mM) solution and were not significantly changed in a low Cl- (6.7 mM) or Ca(2+)-free/high Mg2+ (10.9 mM) solution. The 5-HT2 receptor agonist alpha-methyl-5-HT (50 microM) depolarized RVLM neurons, and the 5-HT2 antagonist ketanserin (1-10 microM) attenuated the 5-HTD and the depolarizing phase of biphasic responses, whereas the 5-HT1A receptor antagonist PBD (2 microM) was without effect. Inclusion of the hydrolysis resistant guanine nucleotide GDP-beta-S in patch solution significantly reduced the 5-HTH as well as the 5-HTD. The present study shows that, in the immature rat RVLM neurons, 5-HT causes a slow hyperpolarization and depolarization probably by interacting with 5-HT1A and 5-HT2 receptors, which are G-proteins coupled. 5-HTH may involve an increase of an inwardly rectifying K+ conductance, and 5-HTD appear to be caused by a decrease of K+ conductance and/or increase of nonselective cation conductance.
------>tmu_sno=None
------>sno=2097
------>authors2=None
------>authors3=None
------>authors4=None
------>authors5=None
------>authors6=None
------>authors6_c=None
------>authors=Hwang, L.L. and Dun N.J.
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=None
------>publish_area=None
------>updateTitle=5-Hydroxytryptamine responses in immature rat rostral ventrolateral medulla neurons in vitro.
------>language=2
------>check_flag=
------>submit_date=
------>country=None
------>no=
------>patent_SDate=None
------>update_bywho=
------>publish_year=1998
------>submit_flag=
------>publish_month=None
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z