Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ho, C.L., Lin, Y.L., Chen, W.C., Hwang, L.L., Yu, H.M. and Wang, K.T.
------>authors3_c=None
------>paper_class1=1
------>Impact_Factor=None
------>paper_class3=2
------>paper_class2=1
------>vol=34
------>confirm_bywho=wslee
------>insert_bywho=llhwang
------>Jurnal_Rank=None
------>authors4_c=None
------>comm_author=
------>patent_EDate=None
------>authors5_c=None
------>publish_day=None
------>paper_class2Letter=None
------>page2=1035
------>medlineContent=
------>unit=000
------>insert_date=20000626
------>iam=4
------>update_date=
------>author=???
------>change_event=5
------>ISSN=None
------>authors_c=None
------>score=500
------>journal_name=Toxicon
------>paper_name=Structural requirements for the edema-inducing and hemolytic activities of mastoparan B isolated from the hornet (Vespa basalis) venom.
------>confirm_date=20020507
------>tch_id=089017
------>pmid=8896194
------>page1=1027
------>fullAbstract=Mastoparan B (MP-B) is a cationic tetradecapeptide isolated from the black-bellied hornet (Vespa basalis) venom. It has a primary structure (LKLKSIVSWAKKVL-CONH2) distinct from other vespine mastoparans. The peptide caused a dose-dependent swelling in rat hind paw and showed a potent hemolytic activity in guinea pig red blood cells. Studies on the structure activity relationship of the peptide showed that replacing lysine at position 2 (Lys2) by asparagine (Asn) in the MP-B sequence caused about 40% decrease in its edema-inducing activity at 50 micrograms/paw and 90% decrease in hemolytic activity at 30 microM of the peptide, while the same substitution at Lys4 did not cause a significant change in either activity. Replacing either Lys11 or Lys12 by leucine (Leu) caused little or no decrease in the edema-inducing and hemolytic activities. Decreases in both activities were observed when both Lys11 and Lys12 were replaced by Leu. On the other hand, replacing tryptophan at position 9 (Trp9) by tyrosine or phenylalanine in MP-B sequence almost abolished its hemolytic activity, while the edema-inducing activity was only partially inhibited. Circular dichroism spectra of the peptides measured in 20% trifluoro-ethanol revealed that substitution of Lys and Trp did not cause a significant change in the conformation of MP-B. it appears that Lys2 is crucial for both hemolytic and edema-inducing activities of MP-B, while Trp9 is of special importance to the hemolytic activity of MP-B. Lys11 and Lys12 in MP-B probably play a lesser role in both activities.
------>tmu_sno=None
------>sno=2100
------>authors2=None
------>authors3=None
------>authors4=None
------>authors5=None
------>authors6=None
------>authors6_c=None
------>authors=Ho, C.L., Lin, Y.L., Chen, W.C., Hwang, L.L., Yu, H.M. and Wang, K.T.
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=None
------>publish_area=None
------>updateTitle=Structural requirements for the edema-inducing and hemolytic activities of mastoparan B isolated from the hornet (Vespa basalis) venom.
------>language=2
------>check_flag=
------>submit_date=
------>country=None
------>no=
------>patent_SDate=None
------>update_bywho=
------>publish_year=1996
------>submit_flag=
------>publish_month=None
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z