Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hsu CH, Quistad GB and Casida JE
------>authors3_c=None
------>paper_class1=1
------>Impact_Factor=None
------>paper_class3=2
------>paper_class2=1
------>vol=46
------>confirm_bywho=bchan
------>insert_bywho=???
------>Jurnal_Rank=None
------>authors4_c=None
------>comm_author=
------>patent_EDate=None
------>authors5_c=None
------>publish_day=None
------>paper_class2Letter=None
------>page2=210
------>medlineContent=
------>unit=E0108
------>insert_date=19991209
------>iam=1
------>update_date=
------>author=???
------>change_event=5
------>ISSN=None
------>authors_c=None
------>score=500
------>journal_name=Toxicological Sciences
------>paper_name=Phosphine-induced oxidative stress in hepa 1c1c7 cells.
------>confirm_date=20010426
------>tch_id=087004
------>pmid=9928684
------>page1=204
------>fullAbstract=Phosphine (PH3), from hydrolysis of metal phosphides, is an important insecticide (aluminum phosphide) and rodenticide (zinc phosphide) and is considered genotoxic and cytotoxic in mammals. This study tests the hypothesis that PH3-induced genotoxicity and cytotoxicity are associated with oxidative stress by examining liver (Hepa 1c1c7) cells for possible relationships among cell death, increases in reactive oxygen species (ROS) and lipid peroxidation, and elevated 8-hydroxyguanine (8-OH-Gua) in DNA. PH3 was generated from 0.5 mM magnesium phosphide (Mg3P2) to give 1 mM PH3 as the nominal and maximal concentration. This level causes 31% cell death at 6 h, measured by lactate dehydrogenase leakage, with appropriate dependence on concentration and time. The intracellular ROS level is elevated within 0.5 h following exposure to PH3, peaking at 235% of the control by about 1 h. Lipid peroxidation (measured as malondialdehyde plus 4-hydroxyalkenals) is increased up to 504% by PH3 at 6 h in a time-dependent manner. The level of 8-OH-Gua in DNA, a biomarker of mutagenic oxidative DNA damage analyzed by GC/MS, increases to 259% at 6 h after PH3 treatment. Antioxidants significantly attenuate the PH3-induced ROS formation, lipid peroxidation, 8-OH-Gua formation in DNA, and cell death, with the general order for effectiveness of GSH (5 mM) and D-mannitol (10 mM) (hydroxyl radical scavengers), then Tempol (2.5 mM) and sodium azide (3 mM) (superoxide anion and singlet oxygen scavengers, respectively). These studies support the hypothesis that PH3-induced mutagenic and cytotoxic effects are due to increased ROS levels, probably hydroxyl radicals, initiating oxidative damage.
------>tmu_sno=None
------>sno=226
------>authors2=None
------>authors3=None
------>authors4=None
------>authors5=None
------>authors6=None
------>authors6_c=None
------>authors=Hsu CH, Quistad GB and Casida JE
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=None
------>publish_area=None
------>updateTitle=Phosphine-induced oxidative stress in Hepa 1c1c7 cells.
------>language=
------>check_flag=0
------>submit_date=
------>country=None
------>no=
------>patent_SDate=None
------>update_bywho=
------>publish_year=1998
------>submit_flag=
------>publish_month=None
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z