Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Chien Y.W., Chang P.L. and Prince C.W.
------>authors3_c=None
------>paper_class1=2
------>Impact_Factor=None
------>paper_class3=0
------>paper_class2=0
------>vol=10
------>confirm_bywho=sihuang
------>insert_bywho=ychien
------>Jurnal_Rank=None
------>authors4_c=None
------>comm_author=
------>patent_EDate=None
------>authors5_c=None
------>publish_day=None
------>paper_class2Letter=None
------>page2=
------>medlineContent=
------>unit=J0400
------>insert_date=20011016
------>iam=1
------>update_date=
------>author=???
------>change_event=5
------>ISSN=None
------>authors_c=None
------>score=59
------>journal_name=The FASEB Journal
------>paper_name=Effects of calcitriol and its analog on osteoblast-like cells.
------>confirm_date=20031021
------>tch_id=088049
------>pmid=11457658
------>page1=
------>fullAbstract=We have reported that multiple treatments with so-called ~non-hypercalcemic~ analogs of 1 alpha,25(OH)(2) vitamin D(3) (1,25(OH)(2)D(3)) stimulate the specific activity of creatine kinase BB (CK) in ROS 17/2.8 osteoblast-like cells, and that pretreatment with these analogs upregulates responsiveness and sensitivity to 17 beta estradiol (E(2)) for the induction of CK. However, since the analogs showed toxicity in vivo, we have now studied the action of a demonstrably non-calcemic hybrid analog of vitamin D in ROS 17/2.8 cells, and prepubertal rats. The analog JKF was designed to separate its calcemic activity from other biological activities by combining a calcemic-lowering 1-hydroxymethyl group with a potentiating C, D-ring side chain modification including 24 difluoronation. Treatment with 1 pM JKF alone significantly stimulated CK specific activity at 4 h by 30+/-10%. However after three daily pretreatments, JKF upregulated the extent of induction by 30 nM E(2) by 33% at 1 pM and by 97% at 1 nM; the E(2) dose needed for a significant stimulation of CK activity was lowered to 30 pM. The action of the SERMS tamoxifen, tamoxifen methiodide and raloxifene, at 3 microM, was also upregulated by three daily pretreatments with 1 nM JKF; unexpectedly, this pretreatment prevented the inhibition of E(2) stimulation by the SERMS. Upregulation of E(2) action by 1 nM JKF was inhibited by 1 nM ZK159222, an inhibitor of the nuclear action of 1,25(OH)(2)D(3). In vivo, three daily injections of 0.05 ng/g body weight of JKF augmented the response of prepubertal female rat diaphysis and epiphysis to E(2). Therefore, demonstrably non-calcemic analogs of 1,25(OH)(2)D(3) may have potential for use in combination with estrogens or SERMS in the prevention and/or treatment of metabolic bone diseases such as postmenopausal osteoporosis.
------>tmu_sno=None
------>sno=4416
------>authors2=None
------>authors3=None
------>authors4=None
------>authors5=None
------>authors6=None
------>authors6_c=None
------>authors=Chien Y.W., Chang P.L. and Prince C.W.
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=None
------>publish_area=None
------>updateTitle=A non-calcemic analog of 1 alpha,25 dihydroxy vitamin D(3) (JKF) upregulates the induction of creatine kinase B by 17 beta estradiol in osteoblast-like ROS 17/2.8 cells and in rat diaphysis.
------>language=2
------>check_flag=
------>submit_date=
------>country=None
------>no=pA680
------>patent_SDate=None
------>update_bywho=
------>publish_year=1996
------>submit_flag=
------>publish_month=None
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z