Taipei Medical University

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Tsai KL, Wang SM, Chen CC, Fong TH and Wu LM
------>authors3_c=None
------>paper_class1=1
------>Impact_Factor=None
------>paper_class3=2
------>paper_class2=1
------>vol=502
------>confirm_bywho=thfong
------>insert_bywho=???
------>Jurnal_Rank=None
------>authors4_c=None
------>comm_author=
------>patent_EDate=None
------>authors5_c=None
------>publish_day=None
------>paper_class2Letter=None
------>page2=175
------>medlineContent=
------>unit=E0107
------>insert_date=19991209
------>iam=4
------>update_date=
------>author=???
------>change_event=5
------>ISSN=None
------>authors_c=None
------>score=500
------>journal_name=Journal of Physiology
------>paper_name=Mechanism of oxidative stress-induced intracellular acidosis in rat cerebellar astrocytes and C6 glioma cells.
------>confirm_date=20010207
------>tch_id=088001
------>pmid=9234204
------>page1=161
------>fullAbstract=1. Following ischaemic reperfusion, large amounts of superoxide anion (.O2-), hydroxyl radical (.OH) and H2O2 are produced, resulting in brain oedema and changes in cerebral vascular permeability. We have found that H2O2 (100 microM) induces a significant intracellular acidosis in both cultured rat cerebellar astrocytes (0.37 +/- 0.04 pH units) and C6 glioma cells (0.33 +/- 0.07 pH units). 2. Two membrane-crossing ferrous iron chelators, phenanthroline and deferoxamine, almost completely inhibited H2O2-induced intracellular acidosis, while the non-membrane-crossing iron chelator apo-transferrin had no effect. Furthermore, the acidosis was completely inhibited by two potent membrane-crossing .OH scavengers, N-(2-mercaptopropionyl)-glycine (N-MPG) and dimethyl thiourea (DMTU). Since .OH can be produced during iron-catalysed H2O2 breakdown (Fenton reaction), we have shown that a large reduction in pH1 in glial cells can result from the production of intracellular .OH via H2O2 oxidation. 3. We have ruled out the possible involvement of: (i) an increase in intracellular Ca2+ levels; and (ii) inhibition of oxidative phosphorylation. 4. Our results suggest that .OH inhibits glycolysis, leading to ATP hydrolysis and intracellular acidosis. This conclusion is based on the following observations: (i) in glucose-free medium, or in the presence of iodoacetate or 2-deoxy-D-glucose, H2O2-induced acidosis is completely suppressed; (ii) H2O2 and iodoacetate both produce an increase in levels of intracellular free Mg2+, an indicator of ATP breakdown; and (iii) direct measurement of intracellular ATP levels and lactate production show 50 and 55% reductions in ATP content and lactate production, respectively, following treatment with 100 microM H2O2. 5. Inhibition of the pH1 regulators (i.e. the Na(+)-H+ exchange and possibly the Na(+)-HCO3(-)-dependent pH1 transporters) resulting from H2O2-induced intracellular ATP reduction may also be involved in the H2O2-evoked intracellular acidosis in glial cells.
------>tmu_sno=None
------>sno=846
------>authors2=None
------>authors3=None
------>authors4=None
------>authors5=None
------>authors6=None
------>authors6_c=None
------>authors=Tsai KL, Wang SM, Chen CC, Fong TH and Wu LM
------>delete_flag=0
------>SCI_JNo=None
------>authors2_c=None
------>publish_area=None
------>updateTitle=Mechanism of oxidative stress-induced intracellular acidosis in rat cerebellar astrocytes and C6 glioma cells.
------>language=
------>check_flag=0
------>submit_date=
------>country=None
------>no=1
------>patent_SDate=None
------>update_bywho=
------>publish_year=1997
------>submit_flag=
------>publish_month=None
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z